
Algebraic curves

Solutions sheet 8

May 8, 2024

Unless otherwise specified, k is an algebraically closed field.

Exercise 1. Let r ≥ 1, P ∈ Ar
k. Call O := OP (Ar

k) and m the maximal ideal of O.

1. Compute χ(n) = dimk(O/mn) for r = 1, 2.

2. For arbitrary r, show that χ(n) is a polynomial of degree r in n with leading coefficient 1/r!.

Solution 1.

1. • Let r = 1. WLOG we can restrict to the case P = (0). m = (x̄), mn = (x̄n). We get χ(n) = n.

• Let r = 2. WLOG take P = (0, 0). OP = k[x, y](x,y). m = (x, y). mn = ⊕n≤i+j⟨xiyj⟩, so that

O/mn =
⊕

i+j<n

⟨xiyj⟩

Hence

χ(n) =

n−1∑
k=0

(k + 1) =
n(n+ 1)

2

2. As before, WLOG take P = (0, . . . , 0). OP = k[x1, . . . , xr](x1,...,xr). m = (x1, . . . , xr).

mn =
⊕

n≤d1+···+dr

⟨xd1
1 · · · · · xdr

r ⟩

so that

O/mn =
⊕

d1+···+dr<n

⟨xd1
1 · · · · · xdr

r ⟩

Fixing 0 ≤ k ≤ n − 1, we count the number of tuples (d1, . . . , dr) such that d1 + · · · + dr = k. This is
(
k+r−1
r−1

)
, as

seen in a previous exercise (with the method of dots and separation).

Then we have the expression

χ(n) =

n−1∑
k=0

(
k + r − 1

r − 1

)
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Next we use the identity on a polynomial P (x) = adx
d + . . . , where d = degP , given by :

P (x)− P (x− 1) = dadx
d−1 + . . .

So we can just compute

χ(n)− χ(n− 1) =

(
n+ r − 2

r − 1

)
=

(n+ r − 2) . . . (n− 1)

(r − 1)!

which has degree r − 1 in n and leading coefficient 1
(r−1)! . From the previous identity we get the desired answer.

Exercise 2. Find the multiple points and the tangent lines at the multiple points for each of the following curves:

1. X4 + Y 4 −X2Y 2

2. X3 + Y 3 − 3X2 − 3Y 2 + 3XY + 1

3. Y 2 + (X2 − 5)(4X4 − 20X2 + 25)

Solution 2.

1. F (X,Y ) = X4 + Y 4 −X2Y 2. Let’s find multiple points by solving :

∂F

∂X
=

∂F

∂Y
= 0

We get either P = (0, 0), either X2 = −Y 2 in characteristic 3. In all those case F (X,Y ) = 0 so those are

multiple points.

For char k ̸= 3, Using dehomogenisation technique, we see that we have 4 tangent lines at 0, as

F (X,Y ) = (X − e
iπ
3 Y )(X + e

iπ
3 Y )(X − e

−iπ
3 Y )(X + e

−iπ
3 Y )

where e
iπ
3 is a square root of any primitive third root of unity.

For char k = 3, this element is not available. And indeed, we have two double tangent lines, as

F (X,Y ) = (X2 + Y 2)2 = (X + iY )2(X − iY )2

2. F (X,Y ) = X3 + Y 3 − 3X2 − 3Y 2 + 3XY + 1. If (X,Y ) is a multiple point, then :

∂F

∂X
= 3X2 − 6X + 3Y = 0

∂F

∂Y
= 3Y 2 − 6Y + 3X = 0

In char k ̸= 3, we compute : X2 = 2X − Y , Y 2 = 2Y − X. So X3 = 2X2 − XY = 4X − XY − 2Y ,

Y 3 = 4Y −XY − 2Y . Plugging in F (X,Y ) = 0, we get

F (X,Y ) = 4X −XY − 2Y + 4Y −XY − 2− 3(2X − Y )− 3(2Y −X) + 3XY + 1 = 0

Hence (X − 1)(Y − 1) = 0, so either X = 1, either Y = 1. From that we see that there is a single multiple

point P = (1, 1).
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Then we compute

F (X + 1, Y + 1) = 3XY +X3 + Y 3

So that mP = 2 and there are two simple tangent line X and Y (it is a node).

In characteristic 3, all points are multiple with a triple tangent line Y = −X.

3. F (X,Y ) = Y 2 + (X2 − 5)(4X4 − 20X2 + 25). Let (X,Y ) be a multiple point. In char k ̸= 2, we get
∂F
∂Y = 2Y = 0 so Y = 0. Then,

F (X,Y ) = (X2 − 5)(4X4 − 20X2 + 25) = (X2 − 5)(2X2 − 5)2

In char k ̸= 5, there are two multiple roots, given by X = ±
√

5
2 and Y = 0, with distinct tangent lines.

In char k = 5, get F (X,Y ) = Y 2 −X6. Multiple point at (0, 0) with one double tangent line.

In char k = 2, get F (X,Y ) = Y 2 +X2 + 1 = (Y +X + 1)2. All points of the curve are multiple points, with

double tangent line.

Exercise 3. Let T : A2
k → A2

k be a polynomial map, Q ∈ A2
k and P = T (Q). If T is written component-wise as

(T1, T2), the Jacobian matrix of T at Q is defined as JQ(T ) = (∂Ti/∂Xj(Q))1≤i,j≤2.

1. Show that mQ(F
T ) ≥ mP (F ).

2. Show that if JQ(T ) is invertible, then mQ(F
T ) = mP (F ).

3. Show that the converse of the previous statement is false.

Solution 3.

1. Just from definition,

FT (xQ +X, yQ + Y ) = F (xP +
∑

(i,j) ̸=(0,0) ai,jX
iY j , yP +

∑
(i,j)̸=(0,0) bi,jX

iY j)

= FTP (
∑

(i,j) ̸=(0,0) ai,jX
iY j ,

∑
(i,j) ̸=(0,0) bi,jX

iY j)

= Fm ◦G+ . . .

where G =
∑

i,j ̸=(0,0)
1

(i+j)!
∂i+jT
∂xi∂yj (Q)XiY j is polynomial without constant terms. Hence mQ(F

T ) ≥ mP (F ).

2. The first term in G is JQ(T )
(
X
Y

)
. If JQ(T ) is invertible, both lines are non zero, hence mQ(F

T ) = mP (F ).

3. A counterexample is given by F = X2−X3, P = Q = (0, 0), T (X,Y ) = (X2, Y ). ThenmQ(F
T ) = mP (F ) = 2

but JQ(T ) =

(
xQ 0

0 1

)
is not invertible.

Exercise 4. Let n ≥ 2 and F ∈ k[X1, . . . , Xn]. Consider V (F ) ⊆ An
k the associated hypersurface and P ∈ V (F ).

1. Define the multiplicity mP (F ) of F at P .

2. If mP (F ) = 1, define the tangent hyperplane of F at P .

3. Can you define tangent hyperplanes for F = X2 + Y 2 − Z2 at P = (0, 0, 0)?
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4. Assume that F is irreducible. Show that, for n = 2 (curves), V (F ) has finitely many multiple points. Is this

true for n > 2?

Solution 4.

1. Let P = (0, . . . , 0). We can define mP (F ) as in the plane curve case. It is the smallest degree m of a summand

in the decomposition of F into linear forms. Then for a general P , mP (F ) = m0(F
T ).

2. If mP (F ) = 1, then FT = F1 + . . . . The tangent hyperplane of F at P is V (F1).

3. In this example, mP (F ) = 2, and for any deshomogenisation, we get a non factorizable polynomial, e.g.

X2 + Y 2 − 1. Geometrically it corresponds to the fact that this equation defines an infinite cone whose

summit is the origin.

4. Let F be irreducible. Suppose F have infinitely many multiple points. Then deg F ≥ 2. Then ∂F
∂X and ∂F

∂Y

vanishes at infinitely many point in V (F ), hence their zero locus is one dimensional, hence they vanish on

V (F ) because F is irreducible. But then F divide them, so that they are 0, which contradicts the degree 2.

For n > 2, we have a counterexample given by taking the product of any irreducible nodal curve with A1.

Exercise 5. Let R = k[ϵ]/(ϵ2) and φ : R → k the k-algebra homomorphism sending ϵ to 0 (R is often called the

ring of dual numbers). Let F ∈ k[X,Y ] irreducible, P ∈ V (F ), mP ⊆ Γ(F ) the corresponding maximal ideal and

θP : Γ(F ) → Γ(F )/mP ≃ k the associated k-algebra homomorphism.

1. Suppose that P is a simple point. Show that there is a bijection between the tangent line to F at P and

{θ ∈ Homk−alg(Γ(F ), R) | φ ◦ θ = θP }.

2. What happens for multiple points (for instance, F = Y 2 −X3, P = (0, 0))?

Solution 5.

1. Let θ be such that φ ◦ θ = θP . It means that θ corresponds to a pair (a, b) ∈ k2 such that

F (xP + ϵa, yP + ϵb) = 0

Then, we compute that F (xP + ϵa, yP + ϵb) = F (xP , yP ) + JP (F )
(
a
b

)
.

F (xP , yP ) = 0. We get JP (F )
(
a
b

)
= 0 which is (a, b) ∈ TP (V (F )).

2. At the cusp, for all a, b ∈ k2, F (aϵ, bϵ) = 0 because ϵ2 = 0. It corresponds to the fact that the whole plane is

the Zariski tangent space at the cusp.
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