Algebraic curves Solutions sheet 8

May 8, 2024

Unless otherwise specified, k is an algebraically closed field.

Exercise 1. Let $r \geq 1$, $P \in \mathbb{A}_k^r$. Call $\mathcal{O} := \mathcal{O}_P(\mathbb{A}_k^r)$ and \mathfrak{m} the maximal ideal of \mathcal{O} .

- 1. Compute $\chi(n) = dim_k(\mathcal{O}/\mathfrak{m}^n)$ for r = 1, 2.
- 2. For arbitrary r, show that $\chi(n)$ is a polynomial of degree r in n with leading coefficient 1/r!.

Solution 1.

- 1. Let r=1. WLOG we can restrict to the case P=(0). $\mathfrak{m}=(\bar{x})$, $\mathfrak{m}^n=(\bar{x}^n)$. We get $\chi(n)=n$.
 - Let r=2. WLOG take P=(0,0). $\mathcal{O}_P=k[x,y]_{(x,y)}$. $\mathfrak{m}=(x,y)$. $\mathfrak{m}^n=\oplus_{n\leq i+j}\langle x^iy^j\rangle$, so that

$$\mathcal{O}/\mathfrak{m}^n = \bigoplus_{i+j < n} \langle x^i y^j \rangle$$

Hence

$$\chi(n) = \sum_{k=0}^{n-1} (k+1) = \frac{n(n+1)}{2}$$

2. As before, WLOG take P = (0, ..., 0). $\mathcal{O}_P = k[x_1, ..., x_r]_{(x_1, ..., x_r)}$. $\mathfrak{m} = (x_1, ..., x_r)$.

$$\mathfrak{m}^n = \bigoplus_{n < d_1 + \dots + d_r} \langle x_1^{d_1} \cdot \dots \cdot x_r^{d_r} \rangle$$

so that

$$\mathcal{O}/\mathfrak{m}^n = \bigoplus_{d_1 + \dots + d_r < n} \langle x_1^{d_1} \cdot \dots \cdot x_r^{d_r} \rangle$$

Fixing $0 \le k \le n-1$, we count the number of tuples (d_1, \ldots, d_r) such that $d_1 + \cdots + d_r = k$. This is $\binom{k+r-1}{r-1}$, as seen in a previous exercise (with the method of dots and separation).

Then we have the expression

$$\chi(n) = \sum_{k=0}^{n-1} \binom{k+r-1}{r-1}$$

Next we use the identity on a polynomial $P(x) = a_d x^d + \dots$, where d = deg P, given by :

$$P(x) - P(x-1) = da_d x^{d-1} + \dots$$

So we can just compute

$$\chi(n) - \chi(n-1) = \binom{n+r-2}{r-1} = \frac{(n+r-2)\dots(n-1)}{(r-1)!}$$

which has degree r-1 in n and leading coefficient $\frac{1}{(r-1)!}$. From the previous identity we get the desired answer.

Exercise 2. Find the multiple points and the tangent lines at the multiple points for each of the following curves:

- 1. $X^4 + Y^4 X^2Y^2$
- 2. $X^3 + Y^3 3X^2 3Y^2 + 3XY + 1$
- 3. $Y^2 + (X^2 5)(4X^4 20X^2 + 25)$

Solution 2.

1. $F(X,Y) = X^4 + Y^4 - X^2Y^2$. Let's find multiple points by solving :

$$\frac{\partial F}{\partial X} = \frac{\partial F}{\partial Y} = 0$$

We get either P = (0,0), either $X^2 = -Y^2$ in characteristic 3. In all those case F(X,Y) = 0 so those are multiple points.

For char $k \neq 3$, Using dehomogenisation technique, we see that we have 4 tangent lines at 0, as

$$F(X,Y) = (X - e^{\frac{i\pi}{3}}Y)(X + e^{\frac{i\pi}{3}}Y)(X - e^{\frac{-i\pi}{3}}Y)(X + e^{\frac{-i\pi}{3}}Y)$$

where $e^{\frac{i\pi}{3}}$ is a square root of any primitive third root of unity.

For char k = 3, this element is not available. And indeed, we have two double tangent lines, as

$$F(X,Y) = (X^2 + Y^2)^2 = (X + iY)^2 (X - iY)^2$$

2. $F(X,Y) = X^3 + Y^3 - 3X^2 - 3Y^2 + 3XY + 1$. If (X,Y) is a multiple point, then:

$$\frac{\partial F}{\partial X} = 3X^2 - 6X + 3Y = 0$$

$$\frac{\partial F}{\partial Y} = 3Y^2 - 6Y + 3X = 0$$

In char $k \neq 3$, we compute: $X^2 = 2X - Y$, $Y^2 = 2Y - X$. So $X^3 = 2X^2 - XY = 4X - XY - 2Y$, $Y^3 = 4Y - XY - 2Y$. Plugging in F(X, Y) = 0, we get

$$F(X,Y) = 4X - XY - 2Y + 4Y - XY - 2 - 3(2X - Y) - 3(2Y - X) + 3XY + 1 = 0$$

Hence (X-1)(Y-1)=0, so either X=1, either Y=1. From that we see that there is a single multiple point P=(1,1).

Then we compute

$$F(X+1,Y+1) = 3XY + X^3 + Y^3$$

So that $m_P = 2$ and there are two simple tangent line X and Y (it is a node).

In characteristic 3, all points are multiple with a triple tangent line Y = -X.

3. $F(X,Y) = Y^2 + (X^2 - 5)(4X^4 - 20X^2 + 25)$. Let (X,Y) be a multiple point. In *char* $k \neq 2$, we get $\frac{\partial F}{\partial Y} = 2Y = 0$ so Y = 0. Then,

$$F(X,Y) = (X^2 - 5)(4X^4 - 20X^2 + 25) = (X^2 - 5)(2X^2 - 5)^2$$

In char $k \neq 5$, there are two multiple roots, given by $X = \pm \sqrt{\frac{5}{2}}$ and Y = 0, with distinct tangent lines.

In char k=5, get $F(X,Y)=Y^2-X^6$. Multiple point at (0,0) with one double tangent line.

In char k = 2, get $F(X, Y) = Y^2 + X^2 + 1 = (Y + X + 1)^2$. All points of the curve are multiple points, with double tangent line.

Exercise 3. Let $T: \mathbb{A}^2_k \to \mathbb{A}^2_k$ be a polynomial map, $Q \in \mathbb{A}^2_k$ and P = T(Q). If T is written component-wise as (T_1, T_2) , the Jacobian matrix of T at Q is defined as $J_Q(T) = (\partial T_i/\partial X_j(Q))_{1 \le i,j \le 2}$.

- 1. Show that $m_O(F^T) \geq m_P(F)$.
- 2. Show that if $J_Q(T)$ is invertible, then $m_Q(F^T) = m_P(F)$.
- 3. Show that the converse of the previous statement is false.

Solution 3.

1. Just from definition,

$$F^{T}(x_{Q} + X, y_{Q} + Y) = F(x_{P} + \sum_{(i,j)\neq(0,0)} a_{i,j} X^{i} Y^{j}, y_{P} + \sum_{(i,j)\neq(0,0)} b_{i,j} X^{i} Y^{j})$$

$$= F^{T_{P}}(\sum_{(i,j)\neq(0,0)} a_{i,j} X^{i} Y^{j}, \sum_{(i,j)\neq(0,0)} b_{i,j} X^{i} Y^{j})$$

$$= F_{m} \circ G + \dots$$

where $G = \sum_{i,j \neq (0,0)} \frac{1}{(i+j)!} \frac{\partial^{i+j}T}{\partial x^i \partial y^j}(Q) X^i Y^j$ is polynomial without constant terms. Hence $m_Q(F^T) \geq m_P(F)$.

- 2. The first term in G is $J_Q(T)\begin{pmatrix} X \\ Y \end{pmatrix}$. If $J_Q(T)$ is invertible, both lines are non zero, hence $m_Q(F^T) = m_P(F)$.
- 3. A counterexample is given by $F = X^2 X^3$, P = Q = (0,0), $T(X,Y) = (X^2,Y)$. Then $m_Q(F^T) = m_P(F) = 2$ but $J_Q(T) = \begin{pmatrix} x_Q & 0 \\ 0 & 1 \end{pmatrix}$ is not invertible.

Exercise 4. Let $n \geq 2$ and $F \in k[X_1, \dots, X_n]$. Consider $V(F) \subseteq \mathbb{A}_k^n$ the associated hypersurface and $P \in V(F)$.

- 1. Define the multiplicity $m_P(F)$ of F at P.
- 2. If $m_P(F) = 1$, define the tangent hyperplane of F at P.
- 3. Can you define tangent hyperplanes for $F = X^2 + Y^2 Z^2$ at P = (0,0,0)?

4. Assume that F is irreducible. Show that, for n = 2 (curves), V(F) has finitely many multiple points. Is this true for n > 2?

Solution 4.

- 1. Let P = (0, ..., 0). We can define $m_P(F)$ as in the plane curve case. It is the smallest degree m of a summand in the decomposition of F into linear forms. Then for a general P, $m_P(F) = m_0(F^T)$.
- 2. If $m_P(F) = 1$, then $F^T = F_1 + \dots$ The tangent hyperplane of F at P is $V(F_1)$.
- 3. In this example, $m_P(F) = 2$, and for any deshomogenisation, we get a non factorizable polynomial, e.g. $X^2 + Y^2 1$. Geometrically it corresponds to the fact that this equation defines an infinite cone whose summit is the origin.
- 4. Let F be irreducible. Suppose F have infinitely many multiple points. Then $\deg F \geq 2$. Then $\frac{\partial F}{\partial X}$ and $\frac{\partial F}{\partial Y}$ vanishes at infinitely many point in V(F), hence their zero locus is one dimensional, hence they vanish on V(F) because F is irreducible. But then F divide them, so that they are 0, which contradicts the degree 2. For n > 2, we have a counterexample given by taking the product of any irreducible nodal curve with \mathbb{A}^1 .

Exercise 5. Let $R = k[\epsilon]/(\epsilon^2)$ and $\varphi : R \to k$ the k-algebra homomorphism sending ϵ to 0 (R is often called the ring of dual numbers). Let $F \in k[X,Y]$ irreducible, $P \in V(F)$, $\mathfrak{m}_P \subseteq \Gamma(F)$ the corresponding maximal ideal and $\theta_P : \Gamma(F) \to \Gamma(F)/\mathfrak{m}_P \simeq k$ the associated k-algebra homomorphism.

- 1. Suppose that P is a simple point. Show that there is a bijection between the tangent line to F at P and $\{\theta \in Hom_{k-alg}(\Gamma(F), R) \mid \varphi \circ \theta = \theta_P\}.$
- 2. What happens for multiple points (for instance, $F = Y^2 X^3$, P = (0,0))?

Solution 5.

1. Let θ be such that $\varphi \circ \theta = \theta_P$. It means that θ corresponds to a pair $(a,b) \in k^2$ such that

$$F(x_P + \epsilon a, y_P + \epsilon b) = 0$$

Then, we compute that $F(x_P + \epsilon a, y_P + \epsilon b) = F(x_P, y_P) + J_P(F) \binom{a}{b}$. $F(x_P, y_P) = 0$. We get $J_P(F) \binom{a}{b} = 0$ which is $(a, b) \in T_P(V(F))$.

2. At the cusp, for all $a, b \in k^2$, $F(a\epsilon, b\epsilon) = 0$ because $\epsilon^2 = 0$. It corresponds to the fact that the whole plane is the Zariski tangent space at the cusp.